(G) coreform

Preparing Tire Tread Models in Coreform Cubit

Many-to-one Sweep

Many-to-one Sweep

- Coreform Cubit is a semiautomated hex-mesher
- Means that Cubit can recognize certain topologies as meshable without further decomposition by the user
- A "many-to-one sweep" ($\mathrm{N}: 1$) is one of the techniques that can recognize topologies as meshable
- Importantly, whenever an N:1 sweep is used, you could have done additional decompositions to make multiple 1:1 sweeps

(o) coreform

Many-to-one Sweep

; coreform

Manual decomposition

(o) coreform

Tire tread geometry

Single "unit" of tread with symmetry

Full tread pattern

Separating into subunits

- When dealing with complex models, it's often helpful to cut the model into simpler subunits and process individually
- Export each subunit to unique ACIS file
- Process each model to obtain mesh, save as CUB5
- Import all CUB5 and apply final operations for global meshability

Meshing Section 1

(G) coreform

Overview

- This section doesn't require any cleanup to produce an $\mathrm{N}: 1$ mesh

Meshing Section 1

Command Panel	5
(S) - Mesh - Volume • Mesh - Sweep	
Select Volumes	
1	
O Specify Source and Target	
\bigcirc Auto Select Source and Target	
Source Surface ID(s) 15117909289148172	
Target Surface ID 19	
O Default ○ Extrude \bigcirc	\bigcirc Advanced
\square Redistribute Nodes	
Transform Method Least Squares Propagate Bias Parallel Meshing Enabled Automatically Smooth the Target Surface	
\square Fixed Imprints Tolerance \square Smart Smooth Number of Layers 5	
(i) ๑	Apply Scheme
Check For Overlapping Surfaces	
Apply Scheme Before Meshing	
Scheme: sweep	Mesh

(g) coreform

Meshing Section 1

Mesh quality

Note that the poor elements
tend to be caused by "linking"
between sweep layers

Group assingments

- When meshing using this "by-section" approach, it can be useful to add any sweep assignments to groups
- This will allow for easily reassigning mesh commands when recombining all the sections together
- When finished save as a CUB5

- Do this process for each section

Meshing Section 2

Overview

- This section will require a few composite operations, to convert challenging-to-mesh surfaces into simpler topology

Meshing Section 2

- Many sipes have rounded features such as shown on the right
- These pose a challenge for meshing as the linking curves for our eventual sweep become perpendicular to the sweep direction and form a singularity between three surfaces

Meshing Section 2

- Compositing the three surfaces into a single curve allows Cubit to ignore the troublesome topology.
- When placing elements \& nodes, Cubit will still evaluate the underlying surface geometries (i.e., shape), just has the freedom to ignore the topology

coreform

Meshing Section 2

(c) coreform

Meshing Section 2

(g) coreform

(c) coreform

Smoothing

Command Panel

(B) 9- Mesh • Volume - Quality • Quality Metrics

Volume $\operatorname{ID}(\mathrm{s})$	1	
	Quality Metric	

Summary Options

- Combined Summary

One Summary Per Entity
\square Filter Element Quality Range
\square Filter Using Element Quality Rank
\checkmark Display Graphical Summary
Draw Mesh Elements
\square Draw Histogram
\square Monochrome

- Clear Display for Mesh

Print Text Summary
(i) \square

- Note that the sloped surface results in relatively poorly shaped elements, but this element quality isn't too bad
- The less perpendicular the surface, the more elements need to deform to conform,
0.562
0.514
0.465
0.417
0.369 resulting in worse element quality

Meshing Section 3

Overview

- This section is nearly identical to the second section, requires similar processing to produce an $\mathrm{N}: 1$ mesh

(o) coreform

Meshing Section 4

Overview

- This model has a sliver that was made to ensure vertical surfaces on the symmetry surfaces
- This sliver would enforce poor element quality but we can move the geometry back to the other side" and make a better "symmetry cut"
- This, combined with some other cleanup will then allow us to make
 an N :1 sweep

Initial Cleanup

Overview of the new cut

- Goal:
- We want a curve that will allow us to sweep in the -Z direction, approximately in-between the two nearly-vertical surfaces

Create offset surface

- Step 1:
- Create an offset surface approximately, will retain the general shape of the surface

Command Panel		5	
(3) 婻 Geometry - Surface - Create - Offset			
From Surface ID(s) 22			
Offset Value			
Optional Surface ID(s)/Offset Pairs			
Surface ID(s)			
Offset Value			
Surface ID(s)			
Offset Value			
Surface ID(s)			
Offset Value			
(i) ๑	Preview	Apply	

Create extended surface

- Step 2:
- Create an extended surface, extended from the offset surface.
- By default the extended surface extends to extent of total bounding box - which is why it was helpful to split the part into sections

Webcut sweep curve

- Step 3:
- Sweep the top curve of the extended surface, in the -Z direction

Webcut sweep curve

Move chopped volume

- Step 4:
- Now we want to move the volume to the other side of the volume -a distance 29.42 in the $+X$ direction

Unite into single volume

- Step 5:
- We can then safely unite the volumes back into a single volume

Composite surfaces

- The geometry modification completed, we now composite extraneous surfaces into macro surfaces
- Sometimes can be done as a single operation on all surfaces

Composite surfaces

- Ignored curves will be shown as a dashed line

Generate many-to-one mesh

Meshing Section 5

Overview

- The most complicated section, we need to use all the tools:

1. Rechop to remove sliver feature
2. Geometry cleanup
3. Virtual topology
4. $\mathrm{N}: 1$ meshing

Chop off the sliver

- We use the same approach as for section 4 to chop and recombine the sliver region
- Note here that the offset and extended surfaces are tall and, due to their angle, the top curve isn't over the desired cut surface

(o) coreform

Chop off the sliver

- So we'll trim the extended surface to give ourselves a curve that we can use for our cut

Chop off the sliver

- Then we do our same webcut approach as before

(g) coreform

Move the chopped surface

Recombining \& cleanup

- Goal:

- Some CAD modeling errors can be seen prior to us re-uniting the volumes
- We want to clean up these mistakes
- You could ask the CAD designer to fix in native CAD software
- Or you can fix yourself using Cubit's direct modeling engine

Chop off extra block

- Create a surface by sweeping the fillet's curve in the $+X$ direction

Chop off extra block

- Then we can use a webcut using the plane of this surface to begin trimming this region away
© . Geometry • Volume • Webcut • Plane Surface
Volume $\operatorname{ID}(\mathrm{s}) 1$
Plane From Surface ID 140|

\square Group Results
(i) \curvearrowleft

Preview
Apply

Chop off extra block

- Next we chop off the "tower" part of the block by the plane defined by the base surface

(c) coreform

Delete the volume \& tools

Command Panel

(S) S Geometry • Volume • Delete

Volume ID(s) 23468 |
\square Keep Lower Geometry
(i) ๑

Reunite volumes

Command Panel		
(1) Geometry * Volume * Boolean * Unite		
Volume $\operatorname{ID}(\mathrm{s})$ all\|		
\square Keep Originals		
\square Include Mesh		
(i) \square	Preview	Apply

(g) coreform

Remove sliver surface

Cleanup extraneous surfaces

- Sometimes these operations result in nearly-equivalent surfaces that are only different due to numerical noise
- For example, face normals that are 1e-12 different, so that a "regularize" command won't clean them
- When these surfaces will eventually be shared between the different model sections, you may choose to use compositing
- When the surfaces won't be shared, you may wish to use the "remove extend" approach to create real geometry changes

Continuing CAD Cleanup

- It appears that the designer's modifications to create the original repeat unit cell resulted in a few more errors
- We need to remove the sliver surface that is caused by the fillet being cylindrical rather than conical

(g) coreform

Remove the offending surfaces

Add a new fillet

- Since Cubit doesn't have the ability to directly modify the original fillet to match the (nearly) conical shape, we will instead create a new fillet
- This is changing the geometry, though very slightly
- The best approach would have been to bring up these modeling issues to the original CAD designer

Remove extraneous surface

- Again, cleanup extraneous surfaces
- Even though we will be removing this surface, by cleaning it we will improve the robustness of forthcoming operations

Complete the fillet

- Goal:
- We want to remove the ledge feature, resulting in a full-length fillet
- Strategy:
- Create a surface that can be swept and Boolean subtracted to leave the fillet

Complete the fillet

- Step 1:
- Create a minimal plane

Command Panel	
B Geometry , Surface, Create , Vertex List	
Select	
O vertex ID(s) 10310582	
\bigcirc Node ID(s)	
\square on surface	
Surface ID	
\square Project	
(i) ๑	Apply

Complete the fillet

- Step 2:
- Create a plane surface by sweeping the curve so that it extends beyond the outer surface

Complete the fillet

- Step 3:
- Create a vertex on the target surface's outer curve

Command Panel		
(G) f. Geometry , vertex, Create, On Curve		
Curve ID(s) 128		
Specify Location Using		
O Fraction	O Close To vertex	
O Distance	O Atlocation	
\bigcirc Postion	O Extema	
\bigcirc Start	O Segments	
\bigcirc Midpoint	O Discontinuites	
\bigcirc End	O Crossing	
Cross		
O carve		
O Surface		
Surface ID(s) 54		
Bounding		
O Unbounded		
- Bounded		
O Near		
Pick Color... defa		
(i) \frown		Apply

Complete the fillet

- Step 4:
- Partition the target surface through the two vertices

Complete the fillet

- Step 5:
- Create a volume by sweeping the target surface along the outer curve

Complete the fillet

- Step 6:
- We suspect that there will be small CAD features introduced if we were to Boolean subtract, so to minimize we extend the volume to at least remove one potential issue

Complete the fillet

- Step 7:
- Subtract the tool volume
- This leaves a little pocket which we will need to cleanup

(G) coreform

Complete the fillet

Overview of pocket

Detail

Complete the fillet

coreform

Taking stock of progress

Need to remove ledge from other side

Reviewing symmetry model

Recovering symmetry

- Goal:
- Recover symmetry by making the ledges on both sides match

Recovering symmetry

- Step 1:
- Create copy of the target curve on our current working surface

Recovering symmetry

- Step 2:
- Use the two vertices from the new curve and one vertex on the original curve to define a cut plane

Recovering Symmetry

- Step 3:
- Begin chopping off the region to remove, here extending one of the base surfaces

Recovering Symmetry

- Step 4:
- Continue chopping off the region to remove, here extending other base surface

Recovering Symmetry

- Step 5:
- Subtract the extraneous volume
- Step 6:
- Unite the volumes

(o) coreform

Recovering Symmetry

Meshing Section 5

- Now we have finished fixing the geometry
- Next, we will go through the model and composite surfaces to support a quality mesh

Result of compositing

(o) coreform

Meshing Section 5

- While we could build an $\mathrm{N}: 1$ mesh on the remaining volume, there's enough source surfaces that it makes sense to split into three sections to make things a bit more manageable
- Also provides a little bit of rigidity to the mesh that helps with robustness and quality

(o) coreform

Meshing Section 5

- Step 1:
- Apply "Sheet Extended From Surface" webcut, using 2 surfaces
- The resulting webcut will use the trimmed extensions of these surfaces (note the angle)

Command Panel	
Volume ID(s) 1	
With Surface ID(s) 829	
Group Results	Preview
(i) \square	

Meshing Section 5

- Step 1:
- Apply "Sheet Extended From Surface" webcut, using 1 surface

(G) coreform

Meshing Section 5

(c) coreform

Recombine and Create Unified Mesh

Import each section

Create Contiguous Mesh

(o) coreform

Refining the mesh

Reviewing the model

Reviewing the model

Reviewing the model

