

Preparing Tire Tread Models in Coreform Cubit

Many-to-one Sweep

Many-to-one Sweep

- Coreform Cubit is a *semi-automated* hex-mesher
 - Means that Cubit can recognize certain topologies as meshable without further decomposition by the user
- A "many-to-one sweep" (N:1) is one of the techniques that can recognize topologies as meshable
- Importantly, whenever an N:1 sweep is used, you *could* have done additional decompositions to make multiple 1:1 sweeps

Many-to-one Sweep

Manual decomposition

Tire tread geometry

Single "unit" of tread with symmetry

Full tread pattern

Separating into subunits

- When dealing with complex models, it's often helpful to cut the model into simpler subunits and process individually
 - Export each subunit to unique ACIS file
 - Process each model to obtain mesh, save as CUB5
 - Import all CUB5 and apply final operations for global meshability

Overview

• This section doesn't require any cleanup to produce an N:1 mesh

Command Panel					Ċ'	
🗲 🔛 🕨 Mesh 🕨	/olume 🕨 Me	sh 🕨 Swe	ep			
Select Volumes						
1						
Specify Source ar	nd Target					
 Auto Select Source 	te and Target	t				
Source Surface ID(s)	151 17 90 92	2 89 148 1	72			
Target Surface ID	19					
O Default) Extrude		⊖ Ad	vanced		
Redistribute Nodes	;					
Transform Method		Least Squ	ares		~	
Propagate Bias						
Parallel Meshing E	inabled					
Automatically Smo	ooth the Targ	et Surface	2			
Fixed Imprints	Smart Sr	mooth				
Tolerance	0.2					
Number of Layers	5				*	
				Apply S	cham	
				Apply 2	criciti	
Check For Overlap	ping Surfaces	;				
Apply Scheme Before	ore Meshing					
Scheme: sweep				Mes	sh	

Mesh quality Note that the poor elements tend to be caused by "linking" between sweep layers 0.998 0.838 0.678 0.517 0.357 t

Group assingments

- When meshing using this "by-section" approach, it can be useful to add any sweep assignments to groups
- This will allow for easily reassigning mesh commands when recombining all the sections together
- When finished save as a CUB5
- Do this process for each section

Overview

• This section will require a few composite operations, to convert challenging-to-mesh surfaces into simpler topology

- Many sipes have rounded features such as shown on the right
- These pose a challenge for meshing as the linking curves for our eventual sweep become perpendicular to the sweep direction *and* form a singularity between three surfaces

- Compositing the three surfaces into a single curve allows Cubit to ignore the troublesome *topology*.
- When placing elements & nodes, Cubit will still evaluate the underlying surface geometries (i.e., shape), just has the freedom to ignore the topology

Command Panel	8 ×
Geometry > Surface > Modify >	Composite
Surface ID(s) 65 87 64	
Select	
O Create O Delete	
Max Surface Angle	
Composite Bounding Curves	
Keep Vertex ID(s)	
Max Curve Angle 15	
Virtual Geometry	
(j) ?	Apply

📽 Cubit — 🗆 🗙		Cubit - 🗆 X
	Command Panel 🗗 🗙	
	Geometry > Curve > Modify > Composite	
	Curve IDs 234 235	
	Select	
	• Create O Delete	
	Keep Vertex ID	
	Max Curve Angle	
	Virtual Geometry	

Smoothing

Command Panel			6	×
See See Mesh > Volume	Quality Quality Metrics			
Volume ID(s)	1			
Quality Metric		Scaled Jacob	pian	\sim
Summary Options				
 Combined Summary 				
One Summary Per Entity	/			
Filter Element Quality Ran	nge			
Filter Using Element Quali	ty Rank			
🕑 Display Graphical Summar	у			
🕑 Draw Mesh Elements				
Draw Histogram				
Monochrome				
< Clear Display for Mesh				
Print Text Summary				
(i) ?		(Apply	

- Note that the sloped surface results in relatively poorly shaped elements, but this element quality isn't too bad
- The less perpendicular the surface, the more elements need to deform to conform, resulting in worse element quality

Overview

 This section is nearly identical to the second section, requires similar processing to produce an N:1 mesh

Overview

- This model has a sliver that was made to ensure vertical surfaces on the symmetry surfaces
- This sliver would *enforce* poor element quality but we can move the geometry back to the other side and make a better "symmetry cut"
- This, combined with some other cleanup will then allow us to make an N:1 sweep

Initial Cleanup

Overview of the new cut

• Goal:

 We want a curve that will allow us to sweep in the –Z direction, approximately in-between the two nearly-vertical surfaces

Create offset surface

• Step 1:

• Create an offset surface approximately, will retain the general shape of the surface

Command Panel		8	×
🧲 ð i Geome	try 🕨 Surface 🕨 Create 🕨 Offset		
From Surface ID(s)	22		
Offset Value	2		
Ор	tional Surface ID(s)/Offset Pairs		
Surface ID(s)			
Offset Value			
Surface ID(s)			
Offset Value			
Surface ID(s)			
Offset Value			
(i) 🥠	Preview Ap	ply	

Create extended surface

• Step 2:

- Create an extended surface, extended from the offset surface.
- By default the extended surface extends to extent of total bounding box – which is why it was helpful to split the part into sections

Command Panel		8	×
Geometry)	Surface + Create + Extended Surface		
	· · · · · · · · · · · · · · · · · · ·		
Surface ID(s)	172		
🗌 Intersecting Entity L	ist		
Extended Value			
Percentage			
Absolute			
(j 🥠	Preview	oly	

Webcut sweep curve

- Step 3:
 - Sweep the top curve of the extended surface, in the –Z direction

Command Panel	Ð	×
Geometry > Volume >	Webcut 🕨 Sweep Curve	
Volume ID(s) 1		
Curve ID 490		
Direction		
 Vector 	O Along Curve	
O Rotate About Axis		
Vector 0 0 -1		
Distance		
End Conditions		
Through All		
To Surface		
Group Results		
(j) ?	Preview Apply	

Webcut sweep curve

Move chopped volume

• Step 4:

 Now we want to move the volume to the other side of the volume – a distance 29.42 in the +X direction

Command Panel		đΧ
Geometry I	Volume Transform Move	
Volume ID(s)	1	
Include Merged Select Method		
 Distance 	🔿 To Entity	
To Coordinates In Direction Of Su	General Location	
Distance 29.42		
/ Distance		_

Unite into single volume

• Step 5:

• We can then safely unite the volumes back into a single volume

Composite surfaces

- The geometry modification completed, we now composite extraneous surfaces into macro surfaces
- Sometimes can be done as a single operation on all surfaces

Command Panel		Ð	×
🤄 💉 Geome	try > Surface > Modify > Composite		
Surface ID(s) all			
Select			
Create	O Delete		
Max Surface Angle	1		
🔽 Composite Bou	nding Curves		
Keep Vertex ID(s)			
Max Curve Angle	15		
Virtual Geometry			
(i) ?		pply	

Composite surfaces

• Ignored curves will be shown as a dashed line

Generate many-to-one mesh

Meshing Section 5

Overview

- The most complicated section, we need to use all the tools:
 - 1. Rechop to remove sliver feature
 - 2. Geometry cleanup
 - 3. Virtual topology
 - 4. N:1 meshing

Chop off the sliver

- We use the same approach as for section 4 to chop and recombine the sliver region
- Note here that the offset and extended surfaces are tall and, due to their angle, the top curve isn't over the desired cut surface

Chop off the sliver

 So we'll trim the extended surface to give ourselves a curve that we *can* use for our cut

Command Pane	1		8	×
🕞 🗊 🕨 Geon	netry 🕨 Volume 🕨 We	ebcut 🕨 Coordinate Plane		
Volume ID(s) 3				
⊖ yz	⊖ zx	O XY		
Offset Value 1				
C Rotate Plane				
Imprint				
🗌 Include Neighb	oors			
Merge				
Group Results				
(i) 🔨		Preview Ap	ply	

Chop off the sliver

• Then we do our same webcut approach as before

Move the chopped surface

Recombining & cleanup

• Goal:

- Some CAD modeling errors can be seen prior to us re-uniting the volumes
- We want to clean up these mistakes
 - You could ask the CAD designer to fix in native CAD software
 - Or you can fix yourself using Cubit's direct modeling engine

Chop off extra block

• Create a surface by sweeping the fillet's curve in the +X direction

Command Panel		×
🚰 🍞 🕨 Geometry 🕨 Surface	• Create • Sweep	
Curve ID(s) 347		
Sweep Method		
Along Curve	◯ Helix	
 Vector And Distance 	O Target Body	
Axis/Angle		
Vector X,Y,Z 100		
Distance 10		
Include Mesh		
Delete Source Curve		
(i) •		Apply

Chop off extra block

• Then we can use a webcut using the plane of this surface to begin trimming this region away

Command Panel
Geometry ► Volume ► Webcut ► Plane Surface
/olume ID(s) 1
Plane From Surface ID 140
Group Results
Preview Apply

Chop off extra block

• Next we chop off the "tower" part of the block by the plane defined by the base surface

Command Panel	×
Geometry > Volume > Webcut > Plan	ne Surface
Volume ID(s) 1	
Plane From Surface ID 122	
Group Results	
(j) ?	Preview Apply

Delete the volume & tools

Command Panel	×
Geometry > Volume > Delete	
Volume ID(s) 2 3 4 6 8	
Keep Lower Geometry	Analy
	Apply

Reunite volumes

Command Panel	×
Geometry > Volume > Boolean > Unite	
Volume ID(s) all]
C Keep Originals	
🗌 Include Mesh	
(i) ?	Preview Apply

Remove sliver surface

Cubit	– 🗆 X	€ Cubit - □ X
\sim	Command Panel	
	Geometry ► Surface ► Modify ► Remove	
	Extend	
	Remove Blend Chain	
	Remove Cavity	
	Remove Individually	
	Remove Connected Sets	
	(i) 🥠 Preview	Apply

Cleanup extraneous surfaces

- Sometimes these operations result in nearly-equivalent surfaces that are only different due to numerical noise
 - For example, face normals that are 1e-12 different, so that a "regularize" command won't clean them
- When these surfaces will eventually be shared between the different model sections, you may choose to use compositing
- When the surfaces won't be shared, you may wish to use the "remove extend" approach to create *real* geometry changes

Continuing CAD Cleanup

- It appears that the designer's modifications to create the original repeat unit cell resulted in a few more errors
- We need to remove the sliver surface that is caused by the fillet being cylindrical rather than conical

Remove the offending surfaces

Add a new fillet

- Since Cubit doesn't have the ability to directly modify the original fillet to match the (nearly) conical shape, we will instead create a new fillet
- This **is** changing the geometry, though very slightly
 - The best approach would have been to bring up these modeling issues to the original CAD designer

Remove extraneous surface

- Again, cleanup extraneous surfaces
 - Even though we will be removing this surface, by cleaning it we will improve the robustness of forthcoming operations

Command Panel	×
Geometry > Surface > Modify > Ren	nove
Surface ID(s) 51	
Extend	
Remove Blend Chain	
Remove Cavity	
Keep Surface	
Keep Copy Of Original	
Remove Individually	
Remove Connected Sets	
(j) ?	Preview Apply

• Goal:

• We want to remove the ledge feature, resulting in a full-length fillet

• Strategy:

 Create a surface that can be swept and Boolean subtracted to leave the fillet

- Step 1:
 - Create a minimal plane

Command Panel	x
Geome	try > Surface > Create > Vertex List
Select	
Vertex ID(s)	103 105 82
○ Node ID(s)	
On Surface	
Surface ID	
Project	
(j) 🤊	Apply

• Step 2:

• Create a plane surface by sweeping the curve so that it extends beyond the outer surface

Command Panel		×
Geometry > Surface	Create Sweep	
Curve ID(s) 155		
Sweep Method		
O Along Curve	◯ Helix	
Vector And Distance	O Target Body	
O Axis/Angle		
Vector X,Y,Z 100		
Distance 10		
Include Mesh		
Merge Results		
Delete Source Curve		
🗌 Rigid		
(j) 9		Apply

- Step 3:
 - Create a vertex on the target surface's outer curve

Geometry 🕨 Vert	ex ► Create ► On Curve	
Curve ID(s) 128		
Specify Location Using		
Fraction	O Close To Vertex	
O Distance	At Location	
O Position	◯ Extrema	
🔾 Start	O Segments	
O Midpoint	 Discontinuities 	
O End	Crossing	
Cross		
O Curve		
 Surface 		
Surface ID(s) 54		
Bounding		
O Bounded		
() Near		
Pick Color default		

- Step 4:
 - Partition the target surface through the two vertices

Command Panel	×
Geometry + Surface + Modify + Split	
Through Vertex	~
Surface ID(s) 46	
Through Vertex ID(s) 108 114	
(j) ?	Preview Apply

- Step 5:
 - Create a volume by sweeping the target surface along the outer curve

Command Panel	N Create N Sween	
urface ID(s) 55	V Create V Sweep	
	🔿 Target Volume	
Along Curve	O Target Plane	
Along Vector	O About Axis	
O Direction	⊖ Helix	
urve ID(s) 145 Individual Volumes		
Merge Results		
Delete Guide Curves		
Delete Source Surfaces		
i) 🥠		Apply

• Step 6:

 We suspect that there will be small CAD features introduced if we were to Boolean subtract, so to minimize we extend the volume to at least remove one potential

issue

Command Panel		×
Geometry > Volume > Mod	lify 🕨 Extend by Sweep	
Note: This panel extends unmeshe	d geometry only.	
Surface ID(s) 59		
O Perpendicular	O Target Plane	
O Along Curve	O About Axis	
Along Vector	◯ Helix	
Vector X,Y,Z 100		
Distance (Optional)		
🗌 Draft Angle		C Rigid
Draft Type O Extend O Round	ł	
(j) 🥠		Apply

- Step 7:
 - Subtract the tool volume
 - This leaves a little pocket which we will need to cleanup

Overview of pocket

Detail

Taking stock of progress

Reviewing symmetry model

Recovering symmetry

• Goal:

• Recover symmetry by making the ledges on both sides match

Recovering symmetry

- Step 1:
 - Create copy of the target curve on our current working surface

r	
Command Panel	×
Geometry > Curve	Create Copy and Transform
Curve ID(s) 194	
Transform Copied Curves	
O Move	○ Reflect
○ Rotate	◯ Scale
X <u>-29.42</u> Y Z	
Repeat	
Group Results	
Copy Mesh	
Copy Boundary Conditions	
(j) ?	Preview Apply

Recovering symmetry

• Step 2:

• Use the two vertices from the new curve and one vertex on the original curve to define a cut plane

Command Panel ×
Geometry > Volume > Webcut > Plane Vertex
Volume ID(s) 1
Vertex 1 ID 148
Vertex 2 ID 147
Vertex 3 ID 105
Group Results
(i) I Preview Apply

• Step 3:

 Begin chopping off the region to remove, here extending one of the base surfaces

Command Panel
G T « Volume > Webcut > Sheet Extended From Surface
Volume ID(s) 1
With Surface ID(s) 85
Group Results
(i) 🥎 Preview Apply

• Step 4:

• Continue chopping off the region to remove, here extending other base surface

Command Panel	ĸ
G T « Volume > Webcut > Sheet Extended From Surface	
Volume ID(s) 6	1
With Surface ID(s) 112	
Group Results	
(i) Preview Apply)

- Step 5:
 - Subtract the extraneous volume
- Step 6:
 - Unite the volumes

- Now we have finished fixing the geometry
- Next, we will go through the model and composite surfaces to support a quality mesh

Result of compositing

- While we could build an N:1 mesh on the remaining volume, there's enough source surfaces that it makes sense to split into three sections to make things a bit more manageable
- Also provides a little bit of rigidity to the mesh that helps with robustness and quality

• Step 1:

- Apply "Sheet Extended From Surface" webcut, using 2 surfaces
- The resulting webcut will use the trimmed extensions of these surfaces (note the angle)

Command Panel	×
G T « Volume > Webcut > Sheet Extended From Su	urface
Volume ID(s) 1	
With Surface ID(s) 8 29	
Group Results	
(i) 🧿 Preview	Apply

- Step 1:
 - Apply "Sheet Extended From Surface" webcut, using 1 surface

Recombine and Create Unified Mesh

Import each section

Note that these meshes are not contiguous at their boundaries. We will need to imprint and merge these volumes with each other and remesh!

Create Contiguous Mesh

Refining the mesh Command Panel 🔚 🖶 🕨 Mesh 🕨 Volume 🕨 Refine 🕨 General Refinement Volume ID(s) Refinement Condition Split Iterations O Target Size 1.0 Refinement Boundary Element Depth Refinement Radius Smooth (i) **1** Apply While you *could* use a finer mesh size at

the time of creation, I find that sometimes it's faster and more robust to mesh coarse and then refine to the desired size – especially when using N:1 sweeps

Reviewing the model

Reviewing the model

Reviewing the model

